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Abstract

The creation of realistic looking terrains is an important part in the movie industry as
well as in computer games and simulations. Realistic and visually appealing landscapes
help the consumer to immerse themselves in the virtual world. One of the greatest
challenges of generating terrain are the effects of erosion. Those effects can be found
everywhere in nature and are a vital part of natural looking terrain.

After a foundational research in the field of erosion algorithms, I wrote an highly
adaptable algorithm to simulate hydraulic erosion on a heightfield. This algorithm
excels through its various parameters, which allow several results for the same input.
Through its interactivity it allows the user to erode the terrain according to its needs.

Das Generieren realistisch wirkender Landschaften ist ein wichtiger Bereich sowohl
in animierten Filmen, als auch in Computerspielen und -simulationen. Naturnahe,
optisch ansprechende Landschaften helfen dem Konsumenten in eine virtuelle Welt
einzutauchen. Eine der grofiten Herausforderungen beim Generieren eines Terrains
stellen dabei die Erosionseffekte dar. Da sie tiberall in der Natur sichtbar sind, sind sie
unabdingbar fiir ein realistisch wirkendes Terrain.

Aufbauend auf einer grundlegenden Analyse der bestehenden Erosionsalgorith-
men habe ich einen sehr anpassbaren Algorithmus zur Simulation von hydraulischer
Erosion auf einem Hohenfeld geschrieben. Dieser Algorithmus zeichnet sich durch
seine unterschiedlichen Simulationsparameter und somit eine Vielfalt moglicher Lo-
sungen aus. Dank seiner Interaktivitadt erlaubt er dem Benutzer eine Landschaft seinen
Anforderungen entsprechend moglichst naturnah zu erodieren.
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1 Introduction

Beautiful landscapes are a feature in many computer games today and especially
role-playing games often present huge areas of outside terrain. Those terrains need to
look realistic and appealing on the one hand but on the other hand they often have
to fulfill several requirements defined by the games mechanics. The latter can often
be only achieved by hand-sculpting the terrain. Unfortunately it is very difficult and
time-consuming to sculpt realistic looking terrain from hand since the human brain
is familiarized with a lot of real landscapes and notices even slight deviations in style
pretty fast.

One major aspect that formed the distinctive look of landscapes on our planet is
erosion caused by wind and water. It is known in computer graphics that the results
of such processes are crucial for a realistic looking landscape. Figure 1.1 shows an
example of a procedurally generated mountain. Erosion marks are clearly visible.

To simplify the processes of generating and modeling landscapes and terrains ero-
sion algorithms have been introduced. The first erosion simulation algorithms were
developed more than 25 years ago and since then different approaches have been made
to improve the results.

This thesis will give a short overview over previous work in this field of study and
present a simple particle based algorithm for hydraulic erosion.

1.1 Definition of task

The goal of this bachelor’s thesis is to provide an algorithm that simulates hydraulic
erosion on an arbitrary heightmap on the basis of foundational research about the field
of erosion algorithms.

The result shall be visually appealing and natural looking, however it is not goal to
run a fully physically based fluid simulation. To create good looking results it will be
necessary to make the algorithm adjustable to hightmaps with different characteristics.




1 Introduction

Figure 1.1: Procedurally generated and eroded mountain terrain. Generated and ren-
dered with Terragen 3 [LLC].

1.2 Outline of the thesis

This first chapter introduces the topic and defines the task.

Chapter two defines and explains various terms which are used in the thesis.

The third chapter gives an overview over the history as well as current state of
research of erosion algorithms.

In chapter four a comparison between the two most used approaches, the grid based
and the particle based approach, is given with strengths and weaknesses.

Chapter five explains my implementation of an particle based erosion algorithm as
well as failed attempts and improvements I made during development.

In chapter six the algorithm is evaluated concerning implementation, performance
and results.

In the last chapter ideas and approaches for future work are given.




2 Terms and Definitions

This chapter describes important terms and definitions which are needed for the
following chapters of the thesis.

Map

A map is a data structure that represents values on a grid. The values are saved in an
array representing a two dimensional uniform grid with dimensions size, and size,.
Each value stored in the array is allocated to one grid point and every grid point has
exactly one value. The value at point (x,y) is saved at array index x + y- size,.

Heightmap

A heightmap is a map containing float values used to describe terrain. The value at
each grid point represents the elevation of the terrain at the coordinates (x,y), it can be

seen as the grid points z-coordinate. The values usually are normalized to a range of
[0,1].

Mesh

A mesh consists of triangles, defined by three vertices each. Those triangles represent
flat surface parts of a 3D-Model.




3 Related Work

Procedurally generated terrain has been a topic of research nearly since the beginning
of 3D computer graphics. The foundation for procedurally generated content were
the fractal approaches given by Benoit Mandelbrot in [Man82] in 1982. After he
recognized similarities between fractional Brownian motion (fBm) and the silhouette of
mountains, he extended the process to two dimensions to create a Brownian surface,
which resembled a mountainous landscape. In the same year the well known diamond-
square algorithm, also known as ‘random midpoint displacement’, was introduced by
Fournier et al. in [FFC82], however both methods were accused of being flawed since
generated mountains and valleys showed similar features and the terrain has the same
visual characteristics when mirrored upside-down. This particular feature can not be
found in nature because of the effects of erosion.

After an approach to model terrain backwards from random generated stream
networks [KMNS88] the first algorithm was introduced by Musgrave et al. [MCMS89] to
simulate hydraulic erosion on a terrain in 1989. The introduced procedure adds water
to the vertices of a terrain mesh generated from a heightmap. This water then flows
to all lower neighbouring vertices. During this process sediment is taken from higher
vertices and distributed to lower ones as it occures in nature.

In 1999 Chiba et al. introduced the first step to particle based approaches in their
velocity field based algorithm [CMF99]. In their simulation they move water particles
downbhill along the velocity field resembling the motion of water. This vector field is
obtained by the terrain and the particle movement.

A layered data representation was introduced by Bene$ and Forsbach in 2001 in
[BFO1]. It allows to define various layers of material each with different properties
like hardness or grain size. Each layer is affected differently by the erosion processes
presented in the paper. The layers are represented as multiple heightmaps which are
stacked on top of each other. This model is faster and requires far less memory than
the slightly more accurate voxel based approaches. An example of an erosion model
with a layered material representation can be seen in figure 3.1 from [Sta+08].

Benes et al. presented an algorithm based on fluid simulation with the Navier-Stokes




3 Related Work

Figure 3.1: Example of hydraulic erosion on a uniform heightfield using a grid based
fluid simulation. Image from [Sta+08].

equations in [Ben+06] in 2006. This model is the first real physics based approach and
implemented in 3D. The environment is represented as a voxel grid which allows the
creation of overhangs and cave systems. It is very detailed an excellent to simulate
small scale erosion processes, however on large scale terrains those fine details are
neglectable compared to a similar 2.5D implementation, which is much faster and
requires less memory.

One year later Bene$ [Ben07] introduced simultaneously with Mei et al [MDBO07]
a new hydraulic erosion simulation working in realtime. Both use shallow water
equations for the water flow, but Bene$ also uses a shallow water model with high
viscosity for his grit representing layer. The fact that these simulations can run in
real-time makes them importent for interactive terrain modeling.

Another approach was presented in 2009 by Kristof et al. [Kri+09]. The technique
combines smoothed particle hydrodynamics (SPH) as an Lagrangian approach with an
Eulerian erosion model. However the terrain is represented as an uniform heightfield
and thus again no concave features like overhangs or caves are able to form. In their
chapter 6. Conclusion and Future Work” they state that one future work is to extend
the model to a full 3D representation.

Very recently Skorkovska et al. [SKB15] did exactly that and extended the SPH
approach to work on arbitrary triangle meshes, which now allows the creation of
concave formations. That way not only overhangs could be generated, but also inter-
esting structures like underground cave systems. The presented method requires far
less memory than the volumetric based approaches in e.g. [Ben+06], but entail new
challenges like inconsistencies in the mesh.




4 Comparison of grid based and particle
based approaches

Over the years two distinctive methods for hydraulic erosion have been established.
The cell based or grid based approach was introduced by Musgrave et al. [MCM89]
and used in [Ben+06], [Ben07] and [MDBO7]. In this approach the properties of water
and terrain are stored in cells, which interact with their neighbouring cells. These cells
can either be created in two dimensions as in the shallow water models in [Ben07] and
[MDBO07] or in three dimensions, as in [Ben+06].

The particle based approach breaks away from that grid and uses particles to repre-
sent the water. This approach was introduced first by Chiba et al. [CMF99] and used by
the approaches using SPH models [Kri+09] and [SKB15]. It is important to note here,
that only the simulated water is represented by particles. The representation of the
terrain can still be on a grid basis.

In grid based techniques the available simulation space is split into cells. Every cell
keeps track of how the fluid behaves inside it, namely how much water is distributed
to neighbouring cells and how much water it gets from its neighbours. From this
information a new state is calculated every time step. This method to look at defined
spatial points to track the fluid is called an Eulerian viewpoint. Compared to the
particle based simulation methods this one has a higher accuracy but at the cost of
longer computation times. One disadvantage of a grid based method is that for every
time step the whole simulation space has to be considered and every cell has to be
calculated. It is therefore not scaleable if the water is momentarily only at a small
area. Also the conservation of mass is not easy to accomplish in this method. If only a
primitive grid based algorithm is used, it can lead to ravines only or mostly extending
along the grid axes.

With particle based techniques, called Lagrangian methods, the simulated fluid is
represented by particles which store their position, velocity and sometimes their mass.
Other properties, like the carried sediment in erosion models, can be saved in the
particle too. The particles are then moved according to their properties. In many
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models the particles interact with each other. This method is usually faster then the
Eulerian approach and it also conserves the mass of the fluid naturally as long as
no particle is deleted. A great advantage is that the performance of the algorithm
doesn’t depend on the size of the simulation space. Areas in which no particles are
located don’t need to be updated since every particle is only interested in its closest
surroundings. On the downside it is less accurate than the Eulerian approach for fluid
simulations.

Since terrain erosion happens on a large scale, the accuracy of the method is ne-
glectable. I choose to implement a particle based method, because the particle based
approach loses its weakness if accuracy is not considered, while the cell based method
loses its benefit.




5 Particle based Erosion on a Heightmap

The algorithm I implemented was inspired by [Vol]. It is a particle based approach
in which single drops are placed onto the map, run downhill and move material
depending on their carry capacity and speed of motion. The drops are simulated in
2.5D, which means the drop is considered to be always at ground level and it only saves
its position in two dimensions. Also the drops do not interact and are not simulated
with physical principals. The special feature of this algorithm is that the particles move
the same distance every simulation step although they are not bound to the grid. The
simulated time per step is not consistent. Therefore this simulation is not suitable to
simulate a fluid visually, its purpose is to simulate the impacts of water on the terrain.

The goal of the algorithm is to provide optically appealing erosion marks from
running water on small scale as well as large scale terrain.

5.1 Particles

Every drop stores the following information: Its position pos on the grid as a two
dimensional float vector, its current flowing direction dir as a two dimensional normal-
ized float vector, its speed of motion vel as float value, the amount of water water it
contains and the sediment sediment it carries both as float values.

The goal is to move a drop along the path of least resistance from its initial position
to a local minimum in an efficient amount of steps. To move the drop in every iteration
step the gradient g of the heightmap at the current position pos,; is interpolated with
a simple bilinear interpolation considering gradients of the four surrounding grid
points. Those gradients are depending on the position of the drop. E.g. for a position
posed = (x +u,y +v) with u,v € [0, 1] the gradients of surrounding points Py, Pxi1,,
Pyy+1, Pyy1y41 are defined as

P —P
P _ x+1y Xy >
g( x,y) ( Px,y+1 - Px,y
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P —P
P _ x+1y Xy >
g( x+1,y) ( Px+1,y+1 - Px+1,y

( Px+1,y+1 - Px,y+1 )
Px,y—H - Px,y

g(Px,yH)

Px+1 +1 — Px +1
§(Pry1y41) = < P v P Y
x+1Ly+1 — Fx+1y

If a bilinear interpolation is performed with these values, the gradient g in position
pos,i4 can be defined as

(Px+1,y - Px,y) : (1 - U) + (Px+1,y+l - Px,y+1) 4 )
0s =
8(posaid) < (Pry+1 — Pry) - (L —u) + (Prpry+1 — Per1y) -1

In [Vol] the gradient is always set to the interpolated middle point of the cell (x +
0.5,y + 0.5). For accuracy reasons I decided to interpolate the gradient according to the
drops position. I deliberately did not calculate the gradient in a continuous function to
avoid looking up grid points outside of the cell the drop is located in.

This two dimensional vector g is then used to determine the new direction of motion
dirpew. This direction is a blended value between g and dir,;; defined by a parameter
Pinertia With a value between 0 and 1. 1 means g is not taken into account and the
direction never changes and 0 means the previous direction dir,; is ignored and the
new direction is along the negative gradient. This calculation is described in equation
5.1.

ditpew = dirold * Pinertia — & * (1 - piwrtia) (51)

In [Vol] a random direction is chosen if the new directions magnitude is below a
threshold. This happens most often when a drop is initialized inside a flat cell. My
algorithm only chooses a random direction if the direction otherwise would be 0. The
direction of motion is then normalized.

The new position pos,., of the drop is calculated by simply adding the direction of
motion dir,e, onto the current position pos,;; as described in equation 5.2. Since the
direction diry., always has a magnitude of 1, the drop moves exactly one unity during
each step, regardless of its speed vel. This is because one step does not represent a
fixed time span, but the way from position pos,; to position posy. If the drop would
move a distance according to its speed vel, a fast drop can jump over one or more
cells. That causes inconsistencies in the terrain in form of small hills if the drop should
have eroded the part it jumped over, or small pits if the drop should have deposited
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sediment in that cell. If a drop is slowing down it moves a very small distance and a
lot of steps have to be calculated inside one single cell. Allthough that would probably
be more accurate, the differences in the result are small enough to be ignored for the
benefit of performance. A step size of one is the highest distance a drop can travel
without the possibility of jumping over another cell.

POSpnew = POSoid + dit new (5.2)

Now the difference in height between the new and the old position hy;¢ is calculated
following equation 5.3 with h,,., as the height of the terrain at position pos;e, and h,4
as height at position pos,;;. The height values are again interpolated from the height
values at the surrounding grid points.

hdif = hnew - hold (53)

This height difference is now used to determine whether the drop moved downhill
or uphill. If hy;f is positive and thus the new position posye, is higher than the old
position pos,;;, sediment carried by the drop is deposited at pos,; to fill the pit the
drop apparently ran through. If the drop carries enough sediment, the pit is filled, if it
does not, it drops all its sediment. If hy;¢ is negative, pyew is lower than p,; and the
new carry capacity ¢ of the drop is calculated by means of f4;¢, the current velocity vel,
the amount of water the drop contains water and the parameter pospacity as described in
5.4. If the height difference converges to 0 the capacity also would converge to 0, which
leads to less erosion and more deposition in flatter areas. Sometimes however it is more
aesthetic to erode flatter terrain too. For those cases the value pyinsiope is @ minimum
value for lgir. Piminsiope can be used to prevent the capacity from falling too close to 0.

€= max(_hdif/ pmz‘nSlope) -vel - water - Peapacity (5.4)

If the drop carries more sediment than it has capacity for, it drops a percentage of the
sediment surplus defined by peposition at position pyy4 as seen in equation 5.5. In my
first attempts the drop always dropped all surplus sediment. That resulted in spikes
everywhere a drop suddenly lost speed.

If the drop carries less sediment than its capacity c allows, it takes a percentage of its
remaining capacity defined by persion from the map at position py (5.6). With perosion
the speed of erosion can be adjusted down. Important here is that the drop never takes
more sediment then the height difference ;¢. Otherwise drops would be albe to dig
holes, which is not wanted.

(sediment — c) * Pdeposition (5.5)

10
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min((c - SEdiment) * Perosion, _hdif) (5-6)

After that process the speed of motion is adjusted (5.7) and water is evaporated from
the drop (5.8). The new speed of motion vel,,, is calculated as the geometric mean of
the squared old speed vel,;; and the height difference h;¢ as in [Vol]. vel,4 is squared
to give the speed inheritance more weight than the slope. h;¢ is multiplied by the
parameter pguity, which allows to adjust the gravity.

velyey = \/Uelold2 + hdif * Pgravity (5.7)

wateryey = waterold : (1 - Pevapomtion) (58)

This process is repeated until the drop moves out of the map or dies in a pit. To
ensure a drop is not moved around endlessly, a maximum of p,,;.p., Steps per drop is
given.

5.2 Erosion and Deposition

If sediment is taken from the map and added to the drop, all n grid points P; within
the radius p,,4iys are taken into account. p,,4,s determines the area in which the drop
erodes terrain. This covers the fact that no thermal erosion and no sediment slippage
are simulated. If p,,4i,s is 1, very thin ravines occur. In nature those would fill up with
sediment braking from the walls and falling down into the ravines and smoothe their
sides.

Every grid point looses sediment according to its weight w; which is given to P;. w;
is linear decreasing with its distance between P; and the drop position pos as described
in equation 5.9.

w0 — max (0, pragius — (|Pi — pos|)) (5.9)

n
kgomax(oz Pradius — (‘Pk - pOSD)

All weights are normalized by dividing them through their overall sum to ensure the
right amount of sediment is potentially taken.

When a grid point loses sediment according to its weight w;, w; is multiplied with
the erosion factor. This factor determines how hard or solid the terrain at any given
point in 3D space is. The value of the erosion factor is between 0 and 1. If it is 0, no
erosion happens at all. If it is 1, the full erosion is happening. For values over 1 more

11
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sediment than calculated would be removed and the results most certainly are neither
realistic nor optically appealing.

The function computing the erosion factor takes the x, y and z coordinates of the
grid point and returns a factor between 0 and 1. This is helpful if you have parts of
your map, that should not be eroded, e.g. rocks in a sandy area or different layers of
material. In this case the function could take a boolean map and erode just those grid
points to which the corresponding value in the boolean map is true.

If sediment is deposited, it is distributed along the four grid points surrounding the
current position. The distribution is calculated via bilinear interpolation. In this case
no radius is used, because a depositing drop wants to probably fill a small pit of the
size of one cell. Distributing sediment to more surrounding grid points would result in
lifting the pit up, but not filling it.

5.3 Application of the changes

To avoid overly thin ravines, I started blurring the terrain after the erosion. With this
approach details in the erosion effect as well as the terrain map itself were lost. After
that I started to just blur only eroded parts of the terrain. That way details in the terrain
map survived but the erosion effect still lacked of detail.

In the final algorithm the changes on the terrain are tracked during the whole process
of erosion. That way the change map can be blurred before it is applied to the terrain
map. As a last step the blurred change map and the unblurred change map are blended
into one map with a factor b between 0 and 1. If b = 0, the blurred change map is
discarded. if b = 1, only the blurred change map is applied. For values between 0
and 1 the change map is computed as described in equation 5.10. This effect is used in
combination with a low p,,4iys since a high p,44i,s value prevents thin ravines itself.

map = b- MAapPplurred + (1 - b) *MAPynblurred (5.10)

5.4 Parameters

In the following section all parameters of the algorithm are explained and examples
are given that show their effect on the terrain. The blend factor b mentioned in 5.3 is 0
for all examples in the following section.

12
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Inertia

(a) initial terrain (b) Pinertia = 0.025

() Pinertia = 0.1 (d) Pinertia = 0.4

Figure 5.1: Example terrain eroded with different pj,.+i; values. The terrain has a
resolution of 512x512 samples. 300,000 drops were simulated in (b), (c) and

.

The parameter pj,.i; determines the inertia of the simulated
drops. Its value needs to be between 0 and 1. The closer piyertia

gets to 0, the more valley and ravine like structures are formed.

This effect occurs as a result of the drops flowing exactly downhill
and thus digging existing valleys deeper. If the parameter exceeds
a certain value, ravine like structures are only emerging on steep
terrain parts. Instead hills are sharpened while lower parts of the
terrain are flattened.

A 1ow Piyertia value can also lead to a drain valley effect, seen in
figure 5.2. This effect describes the appearance of valleys growing
from the edge of the heightmap in seemingly flat areas. They are
caused by small pans at the edge of the heightmap that won’t get

Figure 5.2

filled up with sediment, because drops coming there leave the heightmap in the next

13
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step and take their sediment with them. If such a valley emerges, every drop that
follows the valley takes sediment and leaves the map without depositing it at the end
of the valley.

One way to avoid this effect is to generate a larger map than needed, erode it and
then cut out a part in the middle of the map. Since those valleys only occur at the
edges, they will be cut off. In my approach the terrain height can not sink below 0.
That way drain valleys can occur, but they will not give unrealistically deep ravines if
the lower level of the terrain is held close to 0.

Carry capacity

(a) initial terrain

(c) Peapacity = 8 (d) Peapacity = 32

Figure 5.3: Example terrain eroded with different pcspacity values. The terrain has a
resolution of 512x512 samples. 300,000 drops were simulated in (b), (c) and

.

The parameter pgpacity determines the amount of sediment a drop can carry as used
in equation 5.4. A higher value results in more sediment being eroded on steeper
ground and deposited in lower regions. Thus each drop has a higher impact on the
result. That leads to a ruggy terrain with more ravines. For the same erosion level with

14
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lower carry capacity more drops are needed, but the result looks smoother.

Deposition speed

(c) Pdeposition = 0.1 (d) Pdeposition = 1

Figure 5.4: Example terrain eroded with different pgeposition values. The terrain has a
resolution of 256 x 256 samples. 75,000 drops were simulated in (b), (c) and

.

The parameter pgeposition limits the sediment that is dropped if the sediment carried
by a drop exceeds the drops carry capacity c as described in equation 5.5. The value is
between 0 and 1. Since the drop loses water over time through evaporation, it happens,
that the capacity falls below the amount of currently carried sediment. For high values
of Paeposition that leads to visible sediment deposition on the flow path. This effect is
visible in ravines on steep ground. A value close to 1 can result in spike artifacts in the
ravines as seen in figure 5.4d. A value close to 0 leads to more ravine formation since
nearly no sediment is dropped except for cases when a drop reaches a pit and tries to
fill it up. The least ravine formation happens with a value around 0.1.

15
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Erosion speed

Similar to the deposition speed, the parameter p,,ysion determines how much of the free
capacity of a drop is filled with sediment in case of erosion as described in equation
5.6. The value is between 0 and 1. With a high erosion speed, a drop quickly fills its
capacity and after that most likely only deposits sediment. With a low value, the drops
pick up sediment for a longer path, which results in stronger ravine formation. If the
value falls below 0,1 the ravine formation gets less again, since nearly nothing is eroded
at all.

(a) initial terrain (b) Perosion = 0.01

(©) Perosion = 0-1 (d) Perosion = 0.9

Figure 5.5: Example terrain eroded with different p,rosion values. The terrain has a
resolution of 256x256 samples. 75,000 drops were simulated in (b), (c) and

.

Evaporation speed

The parameter peyaporation determines how fast the drops evaporate. Again its value is
between 0 and 1. A faster evaporation leads to shorter paths of the drops in which they
influence the terrain. That means that a slower evaporation increases the formation of

16
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(c) Pevaporation = 0.05 (d) Pevaporation = 0.1

Figure 5.6: Example terrain eroded with different p.vaporation values. The terrain has a
resolution of 512x512 samples. 300,000 drops were simulated in (b), (c) and

(d).

ravines drastically. With values over 0.5 the water evaporates so fast, that nearly no
changes are visible at all.

Erosion radius

The erosion radius p,,4i,s determines the radius in which sediment is taken from the
rock layer. The smaller p,.4i,s is, the deeper and more distinct the ravines will be.
Raising the erosion radius also increases the computational time needed for each drop
drastically.

As seen in figure 5.7b values lower then 3 lead to unrealistically rugged terrain if the
changes are applied unblurred, but interesting effects can be achieved, when the result
is partially or fully blurred.

17
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(©) Pradius = 4 (d) Pradius = 6

Figure 5.7: Example terrain eroded with different p,,4;,s values. The terrain has a
resolution of 256x256 samples. 75,000 drops were simulated in (b), (c) and

.

Minimal slope

The minimal slope pinsiope is the minimum level of height difference that is taken for
the calculation of the carry capacity of each single drop. Increasing the value ensures
that the carry capacity does not fall below a certain line. Higher values lead to faster
erosion but also stronger ravine forming. Terrains eroded with a low minimal slope
need more drops but give smoother, more realistic looking terrains. Especially for
detailed features and small scale maps a low piusiope is recommended as seen in figure
5.8d.

Maximum path steps

The parameter p,,yparn determines the maximum number of steps a drop is allowed to
take before it is deleted. Obviously a drop has less impact on the terrain map if the
maximum path steps are low. On the other hand the drop loses its ability to erode

18
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(a) initial terrain

(© PminSlope = 0.01 (d) PminSlope = 0.0001

Figure 5.8: Example terrain eroded with different p;;,s10pe values and different amounts
of drops. The terrain has a resolution of 256x256 samples. 75,000 drops
were simulated in (b) and (c); 225,000 drops were simulated in (d).

noteworthy amounts of sediment since evaporation decreases the amount of water,
which means a sinking amount of the carry capacity c. So with increasing p,.parn the
impact of a drop increases logarithmically.

Gravity

The gravity factor pg,auir, is used to determine the speed of motion of the drop. In-
creased pgairy leads to higher speed, which causes more carry capacity c¢. Overall
a higher gravity factor leads to faster erosion, but there are no differences in the
appearance of the terrain.

19



6 Evaluation

This chapter describes the evaluation of the developed algorithm in terms of perfor-
mance and results.

6.1 Implementation

The algorithm was implemented in C# with the Unity3D Engine (version 5.0.0f4) [Tec],
which also rendered all pictures in this work. I connected the droplet simulation with
Unitys update function. This way only a previously determined amount of drops is
simulated before rendering the terrain again. As a result it is possible to watch the
algorithm proceed and stop at any point, when the terrain is eroded enough. Also
various small functions like blurring the heightmap and saving the heightmap to a
tile are provided. This real-time interactivity helps to easily create visually appealing
heightmaps.

6.2 Performance

In this section the performance of the algorithm is evaluated in means of time. The
measurements were made on a system with an Intel Core i5-3470 CPU with 3.20 GHz
and 8 GB RAM.

In table 6.1 the algorithm simulated different amounts of drops on four different
sized heightmaps and measured the time. This process was repeated 10 times for every
setting, the values in the table are the average times. The slightly higher times on big
maps are due to the fact that a drop is far more likely to drop off a small map than from
a large one. This is confirmed by the counts for drops falling off the map in 100,000
drops on sizes 256 x 256 (~16,500 drops), 512 x 512 (~12,000 drops) and 1024 x 1024
(~5,000 drops).

Also the first drops simulated always took longer than later ones. This is caused by
ravines, that are formed over time. They provide a fast way for a drop to its destiny,
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6 Evaluation

whether its outside of the map or a local minimum on the map to fill a pit and die. The
tirst few drops have to form that raviens first.

terrain size drops ‘ 5,000 10,000 20,000 50,000 100,000

256 x 256 1.83s 2.27s 7.66s 19.63s 32.02s
512 x 512 2.08s 249s 7.79s 19.75s 35.89s
1024 x 1024 229s 256s 8.60s 20.90s 40.65s
2048 x 2048 238s 2.66s 933s 2247s 43.8ls

Table 6.1: Time in seconds needed for different amounts of drops on different sized
heightmaps. The following parameters were used: pinertia = 0,3, Peapacity = 8,
Pdeposition = 0,2, Perosion = 0,7, Pevaporation = 0,02, PminSlope = 0,01, Pgravity =
10, Pradius = 4, PmaxPath = 64;

Most parameters have no noticeable effect on the time, but p,,i,s extends the compu-
tational time per drop exponentially, since the drop interacts on every erosion step wit
Pradius® grid points. Measured times can be seen in table 6.2.

Pradius 1 ‘2 4 6 8
Time 048s | 0.83s 227s 551s 9.69s

Table 6.2: Time in seconds needed for 10000 drops on a 256 x 256 sized heightmap. The
following parameters were used: pinertiac = 0,3, Peapacity = 8, Paeposition = 0,2,
Perosion = 0,7, Pevaporation = 0,02, PminSlope = 0,01, Pgravity = 10, PmaxPath = 64;

6.3 Results

As seen in figure 6.1 to 6.4 the eroded terrains look visually appealing and realistic.
Through all the parameters described in 5.4 it is not only possible to adjust the algorithm
to heightmaps with different characteristics and properties, but it is also possible to
erode one terrain to different results as shown in figure 6.4.

In figure 6.1 a completely abstract looking terrain is eroded to a realistic looking,
desert like landscape.

In figure 6.2 a detail view of natural features is given. Good recognizable in this
figure is the combination of seemingly hard and rough rock and smooth sand. Natural
features like water traces, a riverbed like structure and rocky cliffs can be seen.
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6 Evaluation

While in figure 6.2 the scale is smaller - the terrain probably spans over 1km? - the
terrain in figure 6.3 is on a large scale basis. It shows a generated mountain ridge which
spans over several kilometers in diameter.

Figure 6.1: Completely abstract looking terrain (left) eroded to look natural and visually
appealing. Resolution: 512 x 512;
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6 Evaluation

Figure 6.2: Detail view of natural features. Left circle: distinct traces of water; Right
circle: a riverbed like structure; Resolution: 1024 x 1024;

Figure 6.3: Generated Mountain Ridge. Resolution: 1024 x 1024;
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6 Evaluation

Figure 6.4: The same terrain eroded with different parameters. Resolution: 1024 x 1024;
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7 Conclusion and Future Work

I have presented a simple particle based algorithm to simulate hydraulic erosion on a
heightmap. The particles mimic water running on the terrain and distribut sediment.
Through a wide range of adjustable parameters the algorithm is highly adaptable to
different terrains.

As future work I propose porting the algorithm to C++, since C# doesn’t allow
pointers in a safe context and thus the algorithm often has to cache information instead
of working on the object itself. Also parallelization of drops would increase the
performance drastically. The drops could e.g. be each calculated in an own thread. It
might even be possible to use the GPU to calculate the drop paths.

Another aspect in need of improvement is the drain valley effect as described in 5.4.
A good approach could be to automatically simulate a few grid points around the map.
Then whenever a drop is leaving the actual map it can still finish its iteration and then
die.

Also I propose combining the algorithm with a thermal erosion algorithm as in
[Jak11]. Thermal erosion describes the effect that small pieces of rock brake loose from
the ground and form a layer of sediment on top of the rock. Then sediment slippage is
simulated on the sediment layer. This means sediment only settles at a certain angle,
called talus angle. If the gradient at any point is higher sediment is distributed from
the high to the low grid points until the talus angle is reached.

Another improvement would be to implement more then just one layer of rock as
described in [BFO1]. Every layer gets different properties like how hard or soft the
material is or, if thermal erosion is implemented, how high the talus angle is. This way
more interesting natural phenomena could be simulated.
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